Part Number Hot Search : 
ISL28207 MM3Z20 250VA CAT28 ACT510 STF715 BD241 05910
Product Description
Full Text Search
 

To Download PB-IRFU5505 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr/u5505 hexfet ? power mosfet v dss = -55v r ds(on) = 0.11 i d = -18a 8/25/97 parameter typ. max. units r jc junction-to-case CCC 2.2 r ja junction-to-ambient (pcb mount)** CCC 50 c/w r ja junction-to-ambient CCC 110 thermal resistance d -pak to-252aa i-pak to-251aa l ultra low on-resistance l p-channel l surface mount (irfr5505) l straight lead (irfu5505) l advanced process technology l fast switching l fully avalanche rated description parameter max. units i d @ t c = 25c continuous drain current, v gs @ -10v -18 i d @ t c = 100c continuous drain current, v gs @ -10v -11 a i dm pulsed drain current ? -64 p d @t c = 25c power dissipation 57 w linear derating factor 0.45 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ? 150 mj i ar avalanche current ? -9.6 a e ar repetitive avalanche energy ? 5.7 mj dv/dt peak diode recovery dv/dt ? -5.0 v/ns t j operating junction and -55 to + 150 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c absolute maximum ratings fifth generation hexfets from international rectifierutilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the d-pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. the straight lead version (irfu series) is for through-hole mounting applications. power dissipation levels up to 1.5 watts are possible in typical surface mount applications. s d g pd - 9.1610b downloaded from: http:///
irfr/u5505 parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -55 CCC CCC v v gs = 0v, i d = -250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC -0.049 CCC v/c reference to 25c, i d = -1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.11 v gs = -10v, i d = -9.6a ? v gs(th) gate threshold voltage -2.0 CCC -4.0 v v ds = v gs , i d = -250a g fs forward transconductance 4.2 CCC CCC s v ds = -25v, i d = -9.6a CCC CCC -25 a v ds = -55v, v gs = 0v CCC CCC -250 v ds = -44v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC -100 v gs = 20v gate-to-source reverse leakage CCC CCC 100 na v gs = -20v q g total gate charge CCC CCC 32 i d = -9.6a q gs gate-to-source charge CCC CCC 7.1 nc v ds = -44v q gd gate-to-drain ("miller") charge CCC CCC 15 v gs = -10v, see fig. 6 and 13 ? t d(on) turn-on delay time CCC 12 CCC v dd = -28v t r rise time CCC 28 CCC i d = -9.6a t d(off) turn-off delay time CCC 20 CCC r g = 2.6 t f fall time CCC 16 CCC r d = 2.8 , see fig. 10 ? between lead, CCC CCC 6mm (0.25in.)from package and center of die contact ? c iss input capacitance CCC 650 CCC v gs = 0v c oss output capacitance CCC 270 CCC pf v ds = -25v c rss reverse transfer capacitance CCC 120 CCC ? = 1.0mhz, see fig. 5 nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance CCC CCC i gss ns 4.5 7.5 i dss drain-to-source leakage current source-drain ratings and characteristics parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC -1.6 v t j = 25c, i s = -9.6a, v gs = 0v ? t rr reverse recovery time CCC 51 77 ns t j = 25c, i f = -9.6a q rr reverse recoverycharge CCC 110 160 nc di/dt = 100a/s ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) -18 -64 a notes: ** when mounted on 1" square pcb (fr-4 or g-10 material ) . for recommended footprint and soldering techniques refer to application note #an-994 ? this is applied for i-pak, l s of d-pak is measured between lead and center of die contact ? starting t j = 25c, l = 3.2mh r g = 25 , i as = -9.6a. (see figure 12) ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) ? i sd -9.6a, di/dt 290a/s, v dd v (br)dss , t j 150c ? pulse width 300s; duty cycle 2%. s d g s d g downloaded from: http:///
irfr/u5505 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 0.1 1 10 100 20s pulse width t = 150 c j top bottom vgs -15v -10v -8.0v -7.0v -6.0v -5.5v -5.0v -4.5v -v , drain-to-source voltage (v) -i , drain-to-source current (a) ds d -4.5v 0.1 1 10 100 4 5 6 7 8 9 10 v = -25v 20s pulse width ds -v , gate-to-source voltage (v) -i , drain-to-source current (a) gs d t = 25 c j t = 150 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d -10v -16a 0.1 1 10 100 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs -15v -10v -8.0v -7.0v -6.0v -5.5v -5.0v -4.5v -v , drain-to-source voltage (v) -i , drain-to-source current (a) ds d -4.5v downloaded from: http:///
irfr/u5505 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.1 1 10 100 0.2 0.6 1.0 1.4 1.8 2.2 -v ,source-to-drain voltage (v) -i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 1 10 100 1000 1 10 100 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c -v , drain-to-source voltage (v) -i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms 1 10 100 0 200 400 600 800 1000 1200 -v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c iss c oss c rss 0 10 20 30 40 0 4 8 12 16 20 q , total gate charge (nc) -v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 -9.6a v = -28v ds v = -44v ds downloaded from: http:///
irfr/u5505 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10a. switching time test circuit fig 10b. switching time waveforms v ds -10v pulse width 1 s duty factor 0.1 % r d v gs v dd r g d.u.t. + - v ds 90% 10% v gs t d(on) t r t d(off) t f 25 50 75 100 125 150 0 4 8 12 16 20 t , case temperature ( c) i , drain current (a) c d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) downloaded from: http:///
irfr/u5505 fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge -10v d.u.t. v ds i d i g -3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as 25 50 75 100 125 150 0 50 100 150 200 250 300 350 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom -4.3a -6.1a -9.6a r g i as 0.01 t p d.u.t l v ds v dd driver a 15v -20v -+ v dd downloaded from: http:///
irfr/u5505 peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? ? r g v dd ? dv/dt controlled by r g ? i sd controlled by duty factor "d" ? d.u.t. - device under test d.u.t * circuit layout considerations ? low stray inductance ? ground plane ? low leakage inductance current transformer ? * reverse polarity of d.u.t for p-channel v gs [ ] [ ] *** v gs = 5.0v for logic level and 3v drive devices [ ] *** fig 14. for p-channel hexfets downloaded from: http:///
irfr/u5505 package outline to-252aa outlinedimensions are shown in millimeters (inches) to-252aa (d-pak) part marking information 6.73 (.265) 6.35 (.250) - a - 4 1 2 3 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 4.57 (.180) 2.28 (.090) 2x 1.14 (.045) 0.76 (.030) 1.52 (.060) 1.15 (.045) 1.02 (.040) 1.64 (.025) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 0.51 (.020) min . 0.58 (.023) 0.46 (.018) lead assignments 1 - g at e 2 - d r a in 3 - s ou r ce 4 - d r a in 10.42 (.410) 9.40 (.370) notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before sold er dip, solder dip max. +0.16 (.006). international rect ifier lo g o assembly l o t code example : this is an irfr120 w ith assembly lot code 9u1p first portion of part number second portion of part number 120 irfr 9 u 1p a downloaded from: http:///
irfr/u5505 package outline to-251aa outlinedimensions are shown in millimeters (inches) to-251aa (i-pak) part marking information inte rnational rectifier lo go assembly lo t co de first portion of part number second portion of part number 120 9u 1 p example : this is an irfu120 w ith assembly lo t co de 9u1p irfu 6.73 (.265) 6.35 (.250) - a - 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 2.28 (.090) 1.14 (.045) 0.76 (.030) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) lead assignments 1 - g at e 2 - d r a in 3 - source 4 - d r a in notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions show n are before solder dip, solder dip max. +0.16 (.006). 9.65 (.380) 8.89 (.350) 2x 3x 2.28 (.090) 1.91 (.075) 1.52 (.060) 1.15 (.045) 4 1 2 3 6.45 (.245) 5.68 (.224) 0.58 (.023) 0.46 (.018) downloaded from: http:///
irfr/u5505 tape & reel information to-252aa tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1. contro lling dimension : millimeter. 2. all dimensions are show n in millimeters ( inches ). 3. outline con for ms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inc h world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 8/97 downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of PB-IRFU5505

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X